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Single-wave run-up on sloping beaches 
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Possibilities of high shoreline amplification and run-up are investigated. A 
shoreline amplification of magnitude 5.38 and a tsunamigenic (deep water) 
amplification of magnitude 5.71 are obtained from single waves without analytic 
or computational difficulties. It is not claimed that these are a maximum, but 
rather it is conjectured that arbitrarily high run-up and ampIification can be 
obtained provided that the correct initial wave trains are chosen. 

In  studies of wave damage due to tsunamis and storm waves, it  is of interest to 
predict the run-up of these waves on the shoreline of a sloping beach. Also, the 
existence of a maximum amplification over a class of incoming wave trains 
has been questioned and still is unresolved. 

Carrier & Greenspan (1958) performed such an analysis using a shallow-water 
theory. They assumed specific initial wave shapes with initial velocity zero and 
then analysed the wave shape and run-up as the waves propagated towards the 
shore. 

In  Carrier & Greenspan (1958) and later in Butler (1967), initial waves divide 
into seagoing and run-up waves. The run-up is then the result of two wave 
packets rather than a single wave packet. This causes some ambiguity in wave- 
train identification which can be corrected with some difficulty by assigning 
the proper non-zero Velocity to the initial packet so that it all propagates towards 
the shoreline. A simpler alternative scheme is used in this paper. 

We shall consider an inverse problem and calculate the wave shape using run- 
up data as the initial state. In  this case an initial velocity equal to zero is inter- 
preted to mean that all the kinetic energy of the wave has been transformed into 
the potential energy of the run-up. By taking run-up data as initial data, we clear 
up the ambiguity in wave-train identification. There is still some ambiguity in 
defining amplification since the wave shape causing run-up is not known initially. 
We are able, however, to define it in a logical way once we allow the wave shapes 
to'evolve through the magic of the differential equations. 

Let us consider two-dimensional flow over an inclined beach (see figure 1). 
If V*, q*, x* and t* are the dimensional velocity, surface elevation, abscissa and 
time, let unstarred symbols represent the dimensionless quantities according to 

and 
v* = v, v = (qLP)i v, 7" = PL7, x* = Lx (1)  

t*= Tt f (L/pg)t v, 
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FIGURE 1. Physical geometry and co-ordinate system showing initial wave 

and wave a t  shoreline. 

where L is a typical length, /3 is the beach slope and g is the acceleration due to 
gravity. We shall solve the shallow-water problem given by 

a[ V*(q* +h*)-j 
ax* 

where, in this case, h*(x*) is the water depth /3x*. The differential equations for 
the dimensionless problem are the same as (2) with the stars suppressed and g 
set equal to unity. We shall transform the problem from the x, t plane to the c, 
h plane using 

v = cr-la#(cr, h)/ar, x = ia#/ah - gv2--w 16 9 (3)s (4) 

= a a a / a h - p ,  t = :A- v, 1% (6) 
where cr 2 0. The instantaneous shoreline is cr = 0 while h = 0 represents the 
initial time for the problem posed here. The differential equations of this shallow- 
water theory transform into 

or 

In  order to transform back into x, y co-ordinates, we must specify that the 
Jacobian 

is non-zero in the appropriate domain. The solution of (8) derived in Carrier & 
Greenspan (1  958) is given by 

a(x, t)/a(C,h) = a~ [ v: - (+ - v,)z] (9) 
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where 

and 

is the initial shape. Rather than (lo), we shall be interested in the derived for- 
mulae 

( 1 3 )  y1(Cr, A )  = 2 ' 4 = -- 4 0  1 ~ m J o ( ~ v ) c o s ( 7 h ) 1 ( 7 ) d ~  

and A m i n  (TA) 1 ( ~ )  d7. ( 1 4 )  

We shall consider the initial run-up shape implicitly defined by 

As one can see in figure 2, R is the run-up amplitude and H the height of this 
wave a t  the steady-state shoreline (x* = 0). In  the unstarred co-ordinate system 
(15)  is reduced to 

r (x ,  0) = A exp [16P(X--TO)l, ( 1 6 )  

T o  = T(V ,  0) = A exp ( -PV2) ,  (17) 

where R = A B L > O  ( 1 8 )  

or 

and 
R R  
H H  

16Ap = -In- > 0 

define the constants A and p in terms of R and €3. 
Essentially this is an exponentially shaped run-up. Values of A and p must 

be limited to those yielding a non-zero Jacobian (9). With this initial state we 
proceed to evaluate the kernel ( 1  1 )  and get 

I(T) = - (2A/p)  exp ( -72/4p). (20) 

The solution integrals then become 

(21 )  

(22) 

7 = 7/l-$v2, t = &A- v. (231, (24) 

v =  -- 2AS"7exp (-72/4p)~,(7a)sin(7~)dT, 
gP 0 

T exp ( - +/4p) JO(m) cos (7h) d7, 

The above solutions may be written in several other forms for numerical analysis. 
The series 

OD (-4pA2)"(-pa2)k(s+k)! 
% = A X  k=0 s=o c 2s! k !  k !  (25) 
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and 

are everywhere convergent but because of round-off errors they are useful 
numerically only when p c 2  and ph2 are small. This is the form we found to be 
best for determining near-shore amplification. Both series may be computed 
simultaneously upon noting the ratio of corresponding terms. 

Another useful representation of the solution may be evaluated after tabulating 
the function 

ant 
2 

exp [ - a2( 1 - y2)] dy = - erf ( - ia) 

For completeness we note that 

limf(a) = Q. 
a+m 

In  terms off(a) we have 

(30) 

(311, (32) 

From these formulae we see that, as time progresses, rl, V and q will become 
essentially zero except in neighbourhoods where u/h N 1 and as expected we 
get a single wave train in the neighbourhood of z - - at2 or z* N - &8gt*2. This 
form of the solution is useful in tracking the waves into the deeper ocean. 

We can also evaluate the shoreline behaviour directly from (27). We have 

4A 
nu 0 

and 

where 

v = -1 sin $Cf(a-) - f (a+)ld4,  

a$. = p (  u sin q5 f h)2. 

0) = 4 1  - 2f(hP4)l (33) 

and V(h,  0) = - U h p [ l +  (l/hZp - 2)f(hp4)], (34) 

which can likewise be computed in terms of tabulated error functions of imaginary 
argument : 

(35) vI(h, 0) = A [  1 - inthpt erf ( - ihpi)] 

and 

We have done some numerical calculations based on (25 )  and (26 ) .  The im- 
portant dimensional constants are R, the height of the maximum run-up, and H ,  
the height of the run-up wave at the origin (see figure 2 ) .  Equations (18) and (19)  
relate these to the constants A and p used in the computational scheme. Let us 
also note that R/H becomes the important dimensionless parameter that identi- 
fies the wave shape. 
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For consideration of computational accuracy we also need to know t h a t  

and 
*-Px* R H* R 

p(r2 = !!- ln- = -1n- 
H H - H  H’ 

which appear in the power-series solution given by (25) and (26). 
It is obvious that large times t* or large total depths H* make the correspond- 

ing left-hand sides of (37) and (38) large, implying less computational accuracy 
because of round-off errors. One also sees the advantage of considering RIH to 
be close to unity. This corresponds to very long initial waves, for instance, tsuna- 
migenic waves; this also corresponds to the region of validity of this shallow-water 
theory. By taking RIH N 1, we reduce the values of ph2 and p c 2  and thus may 
extend our computations to longer times and larger distances. In  all the calcul- 
ations performed, there was no problem in seeing the wave begin to form and 
depart from the shoreline. In  all cases, we found that the exponential run-up was 
caused by a leading negative wave followed by a positive wave. That this is true 
at the shoreline is evident from (33) and (34). 

Since we have well-defined wave forms, we are able to define amplification. 
Consider the approaching (or receding) wave a i  the position where the height at  
the shoreline is zero. The ratio of the run-up amplitude R to the maximum height 
d of the wave in this position will be the amplification (or shoreline amplification). 
This is well defined for the initial conditions here and corresponds closely to the 
previously mentioned papers on the subject (see dotted curve in figure 1). 

While the previously cited references found shoreline amplifications of 1 -45 
(Carrier & Greenspan 1958) and 2.33 (Butler 1967), we have had no difficulty 
in attaining 5.38. Figures 2-7 show some sample wave forms. The initial curves 
(for t* = 0 )  show exponential run-up. Since the sequence is symmetric about 
zero time, the approaching wave is the same shape as the run-down wave but at  a 
negative time. As RIH increases we get both multiple-valued solutions and 
physically unrealistic solutions. 

A curve of shoreline amplification 8s. R / H  is given in figure 8; the corresponding 
data are in table 1. The three regions in figure 8 correspond to different behaviour 
of the Jacobian. The left-hand region exhibits a reasonably shaped, single-valued 
solution from t = -co to t = +co for all x. The middle region corresponds to 
Jacobian breakdown (multiple-valued solutions) as the wave progresses away 
from the shoreline, i.e. for some x < 0 but for no x > 0. The right-hand region 
(waves of shorter wavelength) corresponds to Jacobian breakdown while the 
wave is forming, running down the slope. Only the left and middle sections 
contain useful information regarding water waves. The right-hand svection is 
there for mathematical interest. 

We do not wish to imply that the high amplitudes we have obtained are maxi- 
mum or near maximum. One can get higher values if one wishes by taking initiaJ 
shapes which differ from the one used here [equations (15)-( 17)]. 

44 F L M  74 
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FIGURE 2. Citse 1. R = 2.0, H = 1.99, amplification = 3.74. -, t* = 0 ;  
--- , t* = 243; * * * . * ,  t* = 386; --, t* = 600. 
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FIGURE 3. Case 2. R = 2.0, H = 1.5, amplification = 3.98. -, t* = 0 ;  
_ _ -  , t* = 15; -.-, t* = 29; --, t* = 44; . * * a ,  t* = 75. 
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X* 

FIGURE 4. Case 4. R = 0.1, H = 0.05, amplification = 4.56. -, t* = 0; 
_ _  , t* = 0.4; - - -, t* = 0.5. 

- 40 -.30 0 20 40 

X* 

FIGURE 5. Case 5. R = 2.0, H = 0.75, amplification = 5.15. 
-, t* = 0 ;  --, t* = 15.3. 
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FIGURE 6. Case 6. R = 2.0, H = 0.655, amplification = 6.381. 
__ , t* = 0; -- , t* == 14.7. 
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FIGURE 7. Cqe 7. R = 2.0, H = 0.625, amplification = 5.51. 
-, P = 0; - -, t* = f 14.5. 
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FIGURE 8. Shoreline amplification RIH as function of RIH. 

With regard to tsunamis the amplifications calculated here are only one factor. 
Basically we have computed some near-shore amplifications. These must be 
modified (increased) by the amplification involved while the wave evolves from 
oceanic to near-shore depths. This again must be modified (increased) by the 
amplification due to near-shore focusing (three-dimensional effects). For tsuna- 
mis the total product of these amplifications may reach a possible maximum 
in the range 2&40. 
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